|
Exercise physiology is the physiology of physical exercise, that is, study of the acute responses and chronic adaptations to a wide range of exercise conditions. In addition, many exercise physiologists study the effect of exercise on pathology, and the mechanisms by which exercise can reduce or reverse disease progression. Accreditation programs exist with professional bodies in most developed countries, ensuring the quality and consistency of education. In Canada, one may obtain the professional certification title – Certified Exercise Physiologist for those working with clients (both clinical and non clinical) in the health and fitness industry. An exercise physiologist's area of study may include but is not limited to biochemistry, bioenergetics, cardiopulmonary function, hematology, biomechanics, skeletal muscle physiology, neuroendocrine function, and central and peripheral nervous system function. Furthermore, exercise physiologists range from basic scientists, to clinical researchers, to clinicians, to sports trainers. == Energy expenditure== Humans have a high capacity to expend energy for many hours during sustained exertion. For example, one individual cycling at a speed of through over 50 consecutive days expended a total of 1,145 MJ (273,850 kcal; 273,850 dieter calories) with an average power output of 182.5 W.〔. This individual while exceptional was not physiologically extraordinary since he was described as "subelite" due to his not being "able to adjust power output to regulate energy expenditure as occurs with elite athletes during ultra-cycling events" page 347.〕 Skeletal muscle burns 90 mg (0.5 mmol) of glucose each minute during continuous activity (such as when repetitively extending the human knee), generating ≈24 W of mechanical energy, and since muscle energy conversion is only 22–26% efficient, ≈76 W of heat energy. Resting skeletal muscle has a basal metabolic rate (resting energy consumption) of 0.63 W/kg〔Elia, M. (1992) "Energy expenditure in the whole body". Energy metabolism. Tissue determinants and cellular corollaries. 61–79 Raven Press New York. ISBN 978-0-88167-871-0〕 making a 160 fold difference between the energy consumption of inactive and active muscles. For short duration muscular exertion, energy expenditure can be far greater: an adult human male when jumping up from a squat can mechanically generate 314 W/kg. Such rapid movement can generate twice this amount in nonhuman animals such as bonobos, and in some small lizards.〔 http://journals.royalsociety.org/content/gdgkj59wydr0vca7/fulltext.pdf〕 This energy expenditure is very large compared to the basal resting metabolic rate of the adult human body. This rate varies somewhat with size, gender and age but is typically between 45 W and 85 W. 〔Henry 2005 provides BMR formula various ages given body weight: those for BMR aged 18–30 in MJ/day (where mass is body weight in kg) are: male BMR = 0.0669 mass + 2.28; females BMR = 0.0546 mass + 2.33; 1 MJ per day = 11.6 W. The data providing these formula hide a high variance: for men weighing 70 kg, measured BMR is between 50 and 110 W, and women weighing 60 kg, between 40 W and 90 W.〕 Total energy expenditure (TEE) due to muscular expended energy is much higher and depends upon the average level of physical work and exercise done during a day. Thus exercise, particularly if sustained for very long periods, dominates the energy metabolism of the body. Physical activity energy expenditure correlates strongly with the gender, age, weight, heart rate, and VO2 max of an individual, during physical activity. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Exercise physiology」の詳細全文を読む スポンサード リンク
|